
For v(x)= v= co& the functions 
dimensional Fourier integral transform 
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vik are evaluated explicitly by using the three- 

e\ 2n @lr--PI 

We hence obtain the known representation of the fundamental solution of the equilibrium 
equation of homogeneous elasticity theory, the Kelvin matrix /6/. 

We note that by using relationships (1.7), (3.3) and (3.4), the stress field caused by 
the action of a unit concentrated force on an unbounded elastic body with inhomogeneity of the 
type consideration can be evaluated. 
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ON CERTAIN FORMULATIONS OF THE BOUNDARY-ELEMENTS METHOD* 

V.YA. TEXBSHCHENKO 

Variational formulations are proposed for the boundary-element method 
(BEM) to solve linear problems of elasticity theorywith a known Green's 
tensor. Unlike existing BEM formulations utilizing the method of weighted 
residuals /l/ or boundary integral equations /2/, the formulations to be 
considered below use a variational formulation of the problems for 
boundary functionals /3/ in a set of allowable functions in the form of 
double-layer potentials whose density is given in the form of BEM basis 
functions. Also examined is a BEM variational formulation on the basis 
of minimization problems for Treffts generalized functionals of the 
fundamental boundary value problems of linear elasticity theory /4/. A 
basis for the formulations is presented. Utilization of the proposed BEM 
formulations is effective in solving boundary-contact problems; con- 
sequently, a numerical realization is examined with an example of a 
unilateral variational problem (of the generalized Signorini problem type 
/5/) corresponding to the classical contact problem of inserting a stamp 

*Prikl.Matem.Mekhan.,51,4,616-627,1987 
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into an elastic half-plane with approximation of the possible contact 
boundary by isoparametric boundary elements. 

1. Let us consider variational formulations of problems for boundary functionals (BF) 
utilized in the BEM variational formulations. Dual variational problems for BF of linear 
elasticity theory are formulated in /3/ in terms of surface displacements and stresses to 
whose solution by the method of orthogonal expansions on the domain boundary /6/ the solution 
of the fundamental boundary value problems of linear elasticity theory is reduced. 

The functionals of these problems are minimized (maximized) by solutions of a homogeneous 
equilibrium equation for an elastic medium in displacements, which it is natural to consider 
as a constraint of the variational problems. Thus, according to /3/, construction of the 
solution of the first fundamental problem (the problem with a clamped boundary) reduces to 
finding the vector cpO(s),. X?Z iT, which is a solution of the variational problem for the BF 

Fs(cp)= 1 r@(cp)ds - 2 1 qt(V)(u*) ds (1.1) 
s s 

defined in the subspace WZ *% S C W,‘h(S) of traces of the solutions of the equilibrium ( ) 
equation Arp= 0 in the domain of an elastic medium G where the vector u* (x),xE~, which 
is assumed to be given, should satisfy the equilibrium equation Au* = K (K is the mass force 
vector) and the boundary condition on the free part of the boundary (since the whole boundary 
is fixed in the first problem, there is no such condition). Then if the vector (&,isconstructed, 
we obtain /6/ a solution of the first problem uO= u* -'PO. 

According to /5/, and also by using an auxiliary mixed boundary value problem for the 
vectoru*with zero boundary condition at points of the boundary of possible contact ‘X1, 
unilateral boundary value problems (of the generalized Signorini problem type /7/), reduce to 
a unilateral variational problem for the BF 

defined on a convex 

where w2*v* (S,) is 

/5/ 

Fs, (cp) = f 1 cpt(“) (cp) ds + s qt(“) (u*) ds (1.2) 

St S, 

closed set of vector-functions 

V(S,)= {cp E w:'h(s,) I cp(") Is, z 0) 

a subspace of traces of the vector-function cp satisfying the conditions 

Acp=O in G, t(Y)(~)(s.= 0, S, = S 18, (1.3) 

Avariational formulation of the BEM is possible on the basis of a generalized Trefftz 
method since minimization of the generalized Trefftz functionals (GTF) reduces to solving 
equations in the boundary values of the desired solution. For instance, for the second 
fundamental problem of linear elasticity theory (the problem with a free boundary) by analogy 
with the GTF of the Neumann boundary value problem for Poisson's equation /8/ the GTF can be 
taken in the form 

d,(u)=2SW(u)dG ++S(t(yu)-au)Zds-ajuUPds 
G S S 

(1.4) 

Here 2W(u) is the quadratic form of linear elasticity theory /8/, t(')(u) is the surface 
normal stress vector, and a is a certain positive constant whose value is selected from' the 
condition for the functional D(u) to be bounded from below. A generalization of the 
functional (1.4) was presented /4/ for the case when norms of the boundary displacement and 
stress values intheclasses of functions Wz”a(S) and W,-‘*(S), respectively, are inserted into 
the functions, resulting in refinement of the values of the functional in the solution of the 
problem as compared with a functional of the form (1.4). 

The GTF of the fundamental boundary value problems of linear elasticity theory are 
minimized in solutions of the equilibrium equation in the displacement Au = K. In problems 
with a free boundary the allowable functions of the variational problems should be subjected 
to known conditions ensuring the single-valued solvability of the problems that are presented 
below in the BEM formulations. 

2. Let GC Em (m = 2, 3) be the domain of an elastic medium with a sufficiently smooth 
boundary S. We partition the boundary S into boundary elements according to /2/: let SAr 

the boundary approximating S , consist of the boundary elements As,, that is 

sA= 6 As, (2.1) 
n=1 
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and let GA CG be the domain bounded by s,; we will assume that Ga-+G as diam As,, - 0. 

Let the displacement field at the points Y E As, be interpolated at the nodal values of the 
displacements by using the vector functions 

w,,(y) = [WI Y, IZ = 1, . . . . N 

where IWI is the matrix of the nodal displacements of the element A.s,,,and Y is a vector of 
the basis functions, i.e., each component of the displacements of the points no As, has the 
form 

Here t = 1, . . . . K is the number of nodes of the element As,,; Wit are elements of the 
nodal displacement matrix, and $(n) is the basis function corresponding to the node k, where 
{n} is the local coordinate system of points of the boundary element As,, which is planar 
or curvilinear depending on the kind of boundary elements. The connection of the coordinate 
system {n} with the global (Cartesian) coordinate system {y} for points of the element As, 
is set up /2/ in terms of the Jacobi matrix [JJ of the transformation that is defined by the 
equationy = y(q), q E As,, sothat dy = (Jl dq. 

Completeness in &(SA) is assumed for the Sequence of interpolation functions {W~,}n=~,~,... 
of the form (2.2), which is ensured /2/ by the representation of wi,(n) on a finite size 
element As, in the form of a complete polynomial of the variable PE As,, and is understood 
in the sense of convergence of the linear combination a,~~,+ f&wiz + . . . + aNWiN in the mean 
to a certain function w,(i = 1, . . . . m) as N -+ 00 (&am As,-0) because of the selection of 
the constants a,,. 

Furthermore, we will consider the case of a homogeneous isotropic elastic medium. Using 
Green's tensor of the first fundamental problem of statics ru,(z,y) (sufficiently complete 
conditions for the existence of such a tensor are presented in /9/) we construct the sequence 
of functions 

{Bin)n=l,P....r E= 1, . . . , m (2.3) 
in the form of double-layer potentials (the notation is borrowed from /9/) 

pin (r)= - + 5 IT (6’/6’~, V (Y)) r(l) (2, Y)I* w$n (Y) ds (y)~ 5 E GA (2.4) 
SA 

where T is the boundary vector operator of differentiation with respect to the direction of 
the positive normal V to the surface (2.1). The density of the potentials (2.4) is determined 
in terms of the displacement components of the form (2.2) for points of the elements Ass,, 
and therefore Ban (I) are essentially the displacement components of the points XEGA of an 
elastic medium. 

We will investigate the integral in (2.4). Firstly, the integral representation (2.4) 
is given a basis /9/ for the case of the piecewise-smooth boundary (2.1). Secondly, since 
the support of the basis functions qr(n) is the boundary element As,, (as usual, the support 
is understood to be the set of points nE SA in which $)k # 0), the integral in (2.4) actually 
extends only over the cell As, (for each n) and exists /9/ for a continuous displacement field 
at points of the element AS,,, which is satisfied if the interpolation functions ws, (11) are 
represented in the form of first (and higher) degree polynomials in the variable qE As,. 

The functions i%lr(X), XE GA, defined by (2.4) have all the properties inherent in a 
double-layer surface potential, in particular, VXEGA are defined and finite and are /9/ 
solutions (for every n) of the first problem of statics in the domain GA with boundary SA 

ABi"(S)=O, xEGA, &ISA=~tn(y), 't=i,...,m 

A = pA + (A + p) grad div 

(2.5) 

(A is the isotropic elasticity theory operator). The foundation of the formulation of 
problem (2.5) for the case of the piecewise-smooth boundary (2.1) is a consequence of the 
foundation of the formula (2.4). By proposing to utilize the functions pin (5) later as 
basis functions of the Ritz process in the variational formulation of the BEM, using the BF 
(1.1) and (1.2), it is necessary to establish the basis properties of the sequence (2.3). 

Because of the linearity of the integral transformation (2.4), the functions bin form a 
sequence of linearly independent functions. The property of completeness of the sequence 
(2.3) in L,(SA) follows from the euality BinlSA =%I (see (2.5)) and the assumed completeness 
of the interpolation functions {w~J-,~,... in & (s,). A boundary value problem with given 
stresses on the boundary sA: t(v) (cp)lS, = tcY)"(u*) corresponds /3/ to the variational problem for 

the BF (1.1) with integrals over the boundary SA and with the constraint Aq= 0 in GA. As 
is well-known /0/, when solving such a problem by an energy method, the application of the 



Ritz process assumes completeness of the sequence of basis functions "in energy" for the 
operator of the boundary value problem. This completeness of the sequence (2.3) will hold 
(see /B/, p.360) by virtue of the positive-definiteness of the operator of the second funda- 
mental problem (in the domain G, with boundary SA) under the condition of completeness of the 
sequence (2.3) in the space L.2 (G,). 

This latter is established as follows. Let the estimate 

hold, which means essentially IT (didy,v (~1) rilf (2, #)I* E 4 (GA) X Lp (s,) and is satisfied /l.O/ in 
potential-theory problems. We square both sides of the equality (2.4) and apply the Cauchy 
inequality to the right side. Then integrating both sides of this inequality with respect to 
G &.' we obtain the inequality 

IIB,,&(G$ ~'/r~"Yl~,,I$(S*)' I=i,...,m 

on whose basis the completeness of the sequence (2.3) in L,(S&) follows from the completeness 
of the sequence of functions {~inf~r,e,... in &(Ga). 

3. We proceed to a BEM formulation on the basis of the variational problemforthe BF 
(1.1) with a constraint on the allowable vector-functions Acp(s)= 0, .TEG. The boundary- 
element approximation of this problem uses partitioning of the boundary S in the form (2.1) 
according to Sect.2 and approximation of the solution "according to Ritz" by basis functions 
in the form of the potentials (2.4). 

Let @s, be the components of the desired nodal displacements; then the i-tb component 
of the approximate solution will have the form 

(3.1) 

where the functions&definedaccordingto (2.4) whentakingaccountofthe representationofthe 
interpolation functions cpin(y(?))),qE AS, in the form (2.2) will be determined from the formula 

(3.2) 

$K(q)lJld~n(q) n = 1, . . ., N, k = 1, . . ., K 

( 1 J 1 is the determinant of the Jacobi matrix fJ1 that transforms dsfq) into ('k(y)). 
A Ritz system of linear algebraic equations to find the nodal values @ir follows from 

the condition for the minimum of the functional FsA (tptx) 

(3.3) 

h, and ii,* are the positive normal and the value of the given vector u* at the points y E 

A%,). The solvability condition for the boundary-element approximation of the variational 
problem for the functionalFs,((PiN) is written in the form (r, is the radius-vector of the 
point ye As,) 

.5S f Pn) (IQ x I, as, == 0 
-=I AS,, n=1 bS, 

We transform system (3.3) to the final system of BBM equations. 
To do this, it should be taken into account that the boundary values of the functions 

pnk (I), (zf!= GA), defined according to (3.2) are the following 

&,k(?)jAa,=$)h.(~)~ VEAL,, k=j,...,K (3.4) 

We obtain for the operator of the boundary stresses at points of the element As,, 

(3.5) 
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where c(h, CL) is a constant factor dependent on the Lam& constants. 
Taking account of Eq.(3.4), the result of differentiating it with respect to v,(q), and 

expression (3.5), we reduce system (3.3) in the unknowns Qp,, to a system of EEM equations 

The vector cpl~ of the approximate %itz" solutionoftheboundary-elementapproximationofthe 
variational problem for the functional F s,((~~) should be subjected to the single-valuedness 
condition 

s ~N~GA= 5 I'Ot (PN dGA = 0 
GA GA 

(3.7) 

The matrix of system (3.6) whose elements are evaluated in terms of integrals of the 
form 

is symmetric (as is usual for a variational formulation of the problem). The positive- 
definiteness of the matrix follows from the positive-definiteness of the quadratic form 

2 s W'(g%)dGA for the VSCtOrS q)N satisfying condition (3.7). The single-valued solvability 
GA 

of the system of BEM Eqs.(3.6) follows from the symmetry and positive-definiteness of the 
matrix. 

It should be taken into account for the foundation of the BEM formulation described that 
the variational problem for the BF (1.1) with a constraint on the allowable functions A9 = 0 
in G is equivalent to the second fundamental problem in the variational formulation for the 
energy functional, and the boundary-element approximations of the form (3.1) are "Ritz" 
approximations of the solution of this problem inthedomain GA with boundary SA. Indeed, it 
is sufficient to confirm compliance with the conditions to which the basis functions & of 
the boundary-element approximations (rfN in the Ritz process (/8/, p.96) are subject. 

lo. For any N, the elements &, &, . . . . &N are linearly independent. 
2O. The elements @in should belong to the energy space of the second fundamental problem 

of linear elasticity theory formulated in the domain GA with the boundary SA, which, as is 
well-known /a/, is a subspace of the Sobolev class of vector-functions @'I that satisfy 
condition (3.7). The elements &n(Z)(XEGa), defined according to (2.4) are at least twice 
continuously differentiable in the domainGAwith piecewise-smooth boundary SA (by virtue of 
(2.5)); such a set of functions is included continuously in the space Ws’(Ga) by virtue of 
the imbedding theorem /8/. 

3O. The sequence (2.3) is the complete, "in energy", operator of the second fundamental 
problem of linear elasticity theory, as is proved in Sect.2. 

On the basis of the above, approximations of the form (3.1), where the coefficients @;* 
axe determined from the system of BEM Eqs.f3.6) under conditions (3.7), form a minimizing 
sequence of the Ritz process for the problem of minimizing the energy functional of the second 
boundary value probleminthe domain GA with the boundary SA. The question of the convergence 
of the minimizing sequence {grn}as the sire of the boundary element (diam As,--+O=+N-+ w) 
diminishes to the exact (energy) solution go of the second problem should be considered /2, 11/ 
upon satisfying certain conditions on the interpolation functions "Pi,, (i = 1, . . . . m) of the 
form (2.2) of the boundary element As,cSA. 

The convergence of the boundary-element approximation as the size of the boundary element 
diminishes is ensured /2, 11/ by the condition of completeness of the basis functions of an 
element and the condition of consistency of the elements , which is that the interpolation 
function and its derivatives to order p-1 inclusive should be continuous during passage 
through the boundary elements , where g is the highest order of the derivatives contained in 
the functional. Completeness criteria for the basis functions of a finite element and the 
consistency of the finite elements ensuring convergence of the FEM (finite element method) in 
the "Ritz" formulation method are presented in Ill/. Since the boundary-element approximation 
considered above for the variational problems for a BF of the form (1.1) is essentially a two- 

dimensional finite-element approximation, the above-mentioned criteria can also be used here. 
In particular, the completeness criterion for boundary-element basis functions is satisfied 
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if the interpolation function cpI,,(l = 1. , m) of the form (2.2) are represented in the form of 
a complete polynomial, as a minimum, of the first degree in the variable 'I E &I while the 
consistency criterion of the boundary elements is satisfied while writing the BEM equations 
because of equality of the nodal values of the desired solution at common nodes of contiguous 
elements (see Sect.5). 

The realization of the proposed BEM variational formulation is considered in Sect.6 
using the example of the algorithm to solve a unilateral variational problem for the BF (1.2). 

4. We consider the BEM formulation on the basis of a variational problem for the GTF 
(1.4). The appropriate bilinear functional has the form 

Q(a,v)=2CW(u,v)dG+~St(',(u)t(Y)(v)ds- 
i: s 

(4.1) 

s W(u)v ds - 
5 
ut(")(v)ds 

s s 

The functionalQ(u) is minimized (see Sect.1) by solutions of the equation Au = K in 
the domain G which it is natural to consider as a constraintonthe problem of finding min Q(u). 
This problem is single-valuedly solvable /8/ under appropriate conditions of single-valued 
solvability of the second boundary value problem of linear elasticity theory. We will consider 
the case of a homogeneous isotropic elastic medium. To solve the problem oft finding minQ((u) 
we use the boundary-element approximation from Sects.2 and 3 in the form of the boundary (2.1), 
the domain GA C G and the approximations 

“N lx) = 6 cx) + ,il i$l k$l Uikhzk (I)* XESGA 

s(x)= s r(x, Y)K(Y)dGa(Y), YE GA 

CA 

(4.2) 

Here Uik are components of the desired nodal displacements of the boundary element AS,,, 
the functions $,,k are determined by (3.2),8(s) is the bulk potential of a homogeneous isotropic 
elastic medium, and r(r, Y) is the matrix of fundamental solutions of the statics equations 
of linear elasticity theory /9/. 

The equality resulting from the material in Sect.2 

i=I,...,m, n=l,...,N 

is used later. 
The bulk potential s(r) is a regular function /9/ (for xf Y) and for any ZEG~ satis- 

fies the equation A6 = K(x); the functions j%,,(x) (XE GA) satisfy the equation A$,, = 0 
(see (2.5)). Then for each N the approximations (4.2) satisfy theconstraint AuN = K almost 
everywhere in the domain GA for the variational problem for the functional ~)G~(UN), approxi- 
mating the functional Q(u). 

Relationships that follow from the above and the Betti formulas /8/ 

2 5 W(&v)dGA= 5 t""'(6)vds(y)+ 1 KvdGa 
GA SA GA 

2~Aw(‘~~B.~.v)dGA=SSbt'Vn'(,~~B~~)vdS(Y). 8.1V=~$rBi,. 

(4.3) 

and are valid for vector-functions v sufficiently smooth in GA + SA, will be needed later. 
From the condition for a minimum of the functional Qs,(uN) we obtain a Ritz system to 

determine the coefficient U,I, which is written in general form thus 

(4.4) 

Using the expression of the bilinear functional approximating the functional (4.1) by 
the approximations (4.21, and the relationships (4.3) to eliminate volume integrals of the 

fonn2SW( u,v)dGa from (4.4) and also using relationships (3.4) and (3.51, we reduce system 
GA 
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(4.4) to a system of BEN equations in the desired nodal values Uik(i = 1, . . ..m) 

(4.5) 

where the functions BP(x) are determined from (3.2). 
The single-valued solvability of system (4.5) (under conditions for solvability of the 

corresponding boundary value problem in the dbmain GA with boundary SA) is set up, firstly, 
on the basis of symmetry of the system matrix , which follows from the symmetry of the bilinear 
functional @GA (UN, VN) and the second relationship from (4.3), secondly, on the basis of 

positive-definiteness of the matrix, as follows from the positive-definiteness of the functiona 

@G, (UN) 
for the vectors uNof the form (4.2) that satisfy the single-valuedness condition 

(3.7). 
Solvability of the Ritz system obtained for minimizing the GTF with boundary norms 

II n IIw;/*@) II VV) (u) ll,;1/.@, 

(see Sect.1) is investigated in /12/; also investigated is the stability of the Ritz process 
and recommendations are given for solving systems of equations of the form (4.5) by an iteration 
method. 

The foundation for the proposed BEM formulation , using the GTF of the second boundary 
value problem of linear elasticity theory, is basedonthe fact that the boundary-element 
approximations (4.2) of the solution of the variational problem for this functional are "Ritz" 
approximations (see Sect.3). The convergence of the "Ritz" approximations in GTF minimization 
boundary value problems of linear elasticity theory is proved in /4/. 

5. We now turn to questions concerning the numerical realization of the proposed vari- 
ational formulations of the BEM. We examine the case of approximating the domain boundary by 
isoparametric curvilinear boundary elements /2/. Then the geometric nodes for the approximation 
of the boundary and the functional nodes for the approximation of the solution are in agreement 
and the very same systems of basis BEM functions are used for the approximation. We will show 
thatinthis case the coefficients for the unknowns of the system of BEM equations of the form 
(3.6) are determined identically by the coefficients of a classical Ritz system /8/ for the 
BF minimization problem of the form (1.1) with the constraint Aq = 0 in G. 

For simplicity we consider the two-dimensional case corresponding to the plane problem 
of elasticity theory. Then to approximate the boundary we use one-dimensional isoparametric 
curvilinear boundary elements with a quadratic change in the BEM basis elements at points of 
the element; such an element has three nodes. We perform certain auxiliary constructions that 
are associated with elements of the differential geometry of surfaces, particularly with the 
properties of the Jacobians of mutually inverse differential mappings /13/. In the case of 
one-dimensional boundary elements As, the mapping 'As,(y)-+ As,(q) is characterized by the 
Jacobian 

1 J I = [(&gl)s + (&g,)‘)‘h &pi = 3, i = 1, 2 (5.9) 

We recall (see Sect.21 that y = (RI, yz) are Cartesian coordinates, while 11 is the local 
coordinate of points belonging to the boundary element A%,. 

In the case of the isoparametric element As,(q) the relation between the Cartesian 
coordinates (yl,yZ) and the local coordinate q is the following: 

i=i,2, q E As,, n=i,...,N (5.2) 
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where khk, YZk) are Cartesian coordinates of the node k of the element As,,, while qk(q) are 
the second-order BEM basis functions in n and K = 3 is the number of interpolation nodes 
within each element As,. At the points of the approximating boundary (2.1) with the external 
normal v, fn, Fz) the normal derivative of the basis functions +k (VI, !4~) is defined as 

aV,,d,k. -d,,q,cos(v,. !,,) i- $$k cna(v,,y2). a,, = + (XI) 
II 

Furthermore, we use the expression (/13/, p.87) for the direction cosines of the normal 
vn at points of the element AS, whose geometry is approximated by using the basis functions 

$k h) by the relationships (5.2) 

cos (vzzT yi) z av,& {(&,$k)’ + (&~k)2~% i = I, 2 

Substituting these relationships into (5.3) and taking account of the equality 
a,,~#~a~,n (i == 1, 2). we obtain 

ayL+" = 

a,,qk = avqk c(a,,v + ~as,vP== &dk I J I-1 

where IJ I-’ is the Jacobian of the inverse mapping As,(n)--+ As,‘(y)(see (5.1)). 
The Jacobians of mutually inverse continuously differentiable mappings are related by 

the relationship IJ I-* I/ / = 1 (/13/, p.62). Then the coefficients for the unknowns in the 
system (3.6) are transformed as follows 

As,(V) As,$v) 

bet us present a method for compiling the equations in system (3.6). Since each of the 
basis functions lPr of the n-th element is identically zero at contiguous points of the (n- 1) 
-th and@ + l)-thelements,eachoftheequationsofthesystemwillcontaincamponentsfar n = z.and 
theremaininqcomponentsval'Lish. Therearetwokindsofequations. For the middle node of the 
n-th element the left-hand side of the equation is written in the form 

- o,i,1,- + d)ie(la_ $ I,+) - (DIJ,+ 

Jh*=+$,%%d~ k=l,2,3; i=1,2 

where @'rr are the desired nodal values , and n is a dimensionless coordinate 
within the limits of the element between -1 and +I. For the common node of 
n-th and (n f I)-th elements, the left side of the equation will have the form 

@,,,I,'- @,I:"'($+"- + I,+) + c@"'@+n- 

Here @p' = (D$', i.e. the desired nodal value for the first node of the (n + I)-th 
element agrees with the nodal value for the third node of the n-th element (numbering of the 
nodes is counter-clockwise). Therefore, at points of the approximating boundary $A the 
solution will be continuous, and therefore, the consistency condition for the boundaryelements 

Aa* i's satisfied (see Sect.3). 

(5.4) 

that varies 
the adjacent 

(5.5) 

6. The unilateral variational problem for the BF (1.2) in the set of vector-functions 
cp E F (Sl) under the linear constraints (1.3) is equivalent /5/ to the unilateral boundary 
value problem 

atp=O -in G, q+‘) lgz 2 0, ft’“’ (Cp) f t(“) (U)ig, > 0 (G.1) 
(rp(V’ [t(v) (cp) + f;(V)(U)]& = 01, P) (9) Is, = 0 

where tcV)(ul is a given normal stress vector at points of the boundary of possible contact 
S, (here the vector t(")(u) is not related to the displacement vector u* (see Sect.1)). 
Problem (6.1) is a problem of the generalized Signorini problem type thatis solvable /7/ 
under the condition @I(a) Is,< 0. 

Numerical realization of the proposed BEM formulation on the basis of a variational 
problem for a BF is examined in an example of a classical plane contact problem of insertion 
(without taking friction into account) of an absolutely rigid stamp into an elastic isotropic 
half-plane which can be formulated as problem (6.1). A duality algorithm (of the Wdzawa- 
Arrow-Gurwitz type /14/), based on the reciprocal formulation of the Lagrangian maximum 
problem, is used to solve this problem as a variational problem for a BF of the form (1.2) 
with linear and convex constraints on the allowable functions. The Lagrange multipliers 
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O”l)j=O.3,2,.,., were used to remove the convexity constraint TE V(S,) and the mechanical inter- 

pretation of these multipliers is: Q is the intensity ofthedistributed normal support reaction 
at points of the set S,'cS, (unknown a priori) at which the stamp contact with the boundary 

S, exists; here 'po(v)[ o = 0, where 'poo V(S,) 
*1 

is a solution of problem (6.1). 

When solving the duality problem for a minimum (with fixed Lagrange multipliers), a Ritz 
process is used on the basis functions in the form of the potentials (2.4) satisfying the 
linear constraint of the problem, the equilibrium equation. Here the boundary S, of possible 
contact was approximated by isoparametric second-order boundary elements and the solution of 
the boundary-element approximation of the problem on the minimum in the BEM basis functions 

rpi = '/*q (i -n), s = (1 - 11) it + ?), ws = l/,11 (1 + II) 

was realized according to the material in Sects.2, 3 and 5. When writing the boundary-element 
equations according to (5.4) and (5.5) at the extreme nodes of the discretised contact boundary 
S IA , the nodal values of the stress vector t'V)(e) were assumed to be zero. 

The maximum problem under convexity constraints on the Lagrange multipliers was solved 
by the gradient descent method (generalization of the Frank-Wolf method /14/). The condition 
for halting theiteration process in 5 was given as 

where e is a given positive number governing the required accuracy of the iteration process 
in the number of iterations j for a fixed number N of boundary elements A& of the boundary 
&a. The vector tcV) (u) (see (6.1)) was given as: tcV) (u) = -p. where p(y) > 0 (Y E S1) is 
the contact normal pressure function under a stamp with a definite stamp-surface geometry in 
the contact 20s under the action of a force 

n 

p= s P(P)@ 
-0 

on the stamp, where a is the halfwfdth of the symmetric possible contact zone relative to the 
st,amp axis /15/. The function p(P) for a circular stamp bounded by the second-order curve 
fb)= Y*@R) within the limits of the possible contact zone S, was taken from /15/ (p.65). Two 
versions of the partition of the contact boundary S, into boundary elements were considered 
for the greatest depth taken (along the stamp axis of symmetry) for the stamp insertion Al= 

0.02R and the corresponding halfwidth a= 0.2R of the possible contact zone. For six elements 
and e- = 5x10-a under conditions (6.21, the greatest error (at the point g= 0 on the stamp 
axis of symmetry) in the values of p and t"')((PhjN) was 8 ~16% (f= 14). For twelve elements the 

following error values are obtained:bz 14.5% (j=i8)for e=Sx10-9; 6S8ye (j = 29) for 8= iO-' , 

and 8~1.5% (j = 55) for em 10-* (computations performed on an ES-1022 computer). 
It was established that an increase in the number of iterations j affects the diminution in 
the error 6 to a greater degree than an increase in the number of boundary elements N. 

In substance, th.e example examined is corroborating the duality algorithm used, in 
the sense that the given contact stresses p(r), obtained as a result of solving the plane 
contact problem by the method of complex function theory /15/, are compared with the contact 
stresses tpl((PA,N)p obtained as a result of solving the unilateral variational problem for the 

BF (1.2). 

7. We will make certain deductions. Unlike the BEM formulations recalled at the beginning 
of the paper, the systems of BEM equations have symmetric matrices in the proposed variational 
formulations. Composed with the BBM formulation utilizing boundary integral equations, there 
is no singularity in calculating the surface integrals in the stage of system matrix formation. 
values of the generalized Trefftz functional of the problem being solved, calculated by the 
approximate solutions /4/, or values of the functional of the dual variational problem /3/ 
can be used for an a posteriori estimate of the error in the boundary-element approximations, 
(in the BEM formulation using boundary functionals). 

At the same time the possibilities of practical utilization of the proposed BEM formula- 
tions are constrained by the boundary value problems for which Green's functions exist. If it 
is taken into account that Green's function is required in explicit form to obtain the solution 
at points of the domain by the boundary values found, then application of the BBM formulation 
is possible in contact problems of linear elasticity theory in which we are interested in the 
displacement and stress distribution at points of the contact boundary. It is sufficient for 
such problems to satisfy the conditions on the data of the problem for which Green's function 



488 

exists; its construction in explicit form, however, is not necessary. 
The possibility should be noted of a dual formulation of BEM on the basis of the dual 

variational problem for boundary functionals in terms of the surface stresses f3/. 
In conclusion, we note that the variational BEM formulations elucidated for linear 

elasticity theory problems can also be used for other elliptic boundary value problems by 
using the variational construction of problems for boundary functionals resulting from 
orthogonal expansions on the boundary of a domain in elliptic boundary value problems /16/. 
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